برای از بین بردن این بیش برازش، باید ورودی‌های شبکه عصبی را کاهش داد. به عبارتی باید اجازه بیش برازش را به شبکه‌های عصبی نداد. در این مقاله برای این کاهش تعداد متغیرها از داده کاوی استفاده شده است. داده کاوی علم کاوش داده‌ها جهت کشف دانش است. علم داده کاوی با ارائه راهکارهای مختلف، اولین رکن استفاده از داده‌ها جهت کشف دانش را حذف داده‌های اضافی و شاخ و برگ‌های غیر ضروری می‌داند و لذا در این مقاله از چند تکنیک داده کاوی که در ادامه شرح داده خواهد شد استفاده گردیده است. همچنین، همانگونه که ذکر شد، مدل‌هایی که برای پیش بینی‌های کوتاه مدت مورد استفاده قرار می‌گیرند، مدل ‌های سری زمانی و تحلیل‌های تکنیکال می‌باشند. از آنجا که ما قصد پیش بینی قیمت بسته شدن سهام را به صورت روزانه داریم نیز، با تلفیق این دو مدل، با بهره گرفتن از اندیکاتورهای تحلیل تکنیکال و قیمت‌های روزهای قبل به پیش بینی می‌پردازیم.
(( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت nefo.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. ))

قسمت دوم این مقاله به تحقیقات مشابه، قسمت سوم به تعریف فرایند و روش انجام تحقیق، قسمت چهارم به نتایج تحقیق، قسمت پنجم نتیجه گیری و قسمت ششم به منابع تخصیص یافته است.

۱-۴- پژوهش‌های مشابه

لو و همکاران[۹] (۲۰۱۴) پس از بررسی دلایل بیش برازش[۱۰] و تعمیم نامناسب شبکه‌های عصبی[۱۱]، با اعمال تغییراتی در شبکه عصبی و به کار بردن کلاسی از تأخیر سازنده RBF[12] شبکه‌های عصبی؛ موفق شده است که شبکه عصبی با دقت بیشتر و البته تعداد نرون های[۱۳] کمتر در لایه پنهان[۱۴] شبکه عصبی ساخته و نتایج آن را در دنیای واقعی امتحان کرده است.
لاهمیری[۱۵] (۲۰۱۳) با به کاربردن تبدیلات گسسته ویولت (SWT)[16] و تقسیم سری زمانی[۱۷] قیمتی به دو بخش ماژور[۱۸] و مینور[۱۹]، نتیجه می‌گیرد که بخش ماژور در واقع دارای فراوانی و پراکندگی پایین تری بوده و برای پیش بینی روند بلند مدت قیمت سهام مناسب است. وی پس از تبدیلات مذکور، با بهره گرفتن از شبکه‌های عصبی بازخور برگشتی[۲۰]، به پیش بینی قیمت سهام پرداخته و با بررسی تئوری خود در ۱۵ پایگاه داده[۲۱]، نتیجه می‌گیرد که الگوریتم پیشنهادی وی از مدلهای ARMA [۲۲]و RW[23] عملکرد بهتری دارد.
تیکنور[۲۴] (۲۰۱۳) با در نظر گرفتن قیمت‌های روزانه و اندیکاتورهای[۲۵] تحلیل تکنیکال[۲۶] به عنوان ورودی شبکه عصبی، قیمت بسته شدن[۲۷] روز بعد را پیش بینی می‌کند. وی با بیان پیچیدگی‌های موجود در روند[۲۸] تغییرات قیمت سهام و مشکلات پیش بینی آن، برای جلوگیری از بیش برازش و بیش آموزش[۲۹] پیشنهاد می‌کند که شبکه عصبی توسط الگوریتم بیزین[۳۰] کنترل شده[۳۱] و برای مدل‌های با پیچیدگی بالا جریمه هایی[۳۲] تعیین گردد تا از بیش برازش و بیش آموزش جلوگیری شود. وی صحت ادعای خود را در سهام‌های مایکروسافت[۳۳] و گلدمن[۳۴] به بوته آزمایش می‌گذارد.
بیسون[۳۵] (۲۰۱۴) با بیان این مسئله که سرمایه گذاری در بازار سهام، به دلیل بازده خوب آن همواره مورد توجه سرمایه گذاران بوده است؛ کسب بازده و سود مناسب در این بازار را منوط به دانستن و پیش بینی کردن نقاط بازگشت[۳۶] قیمت می‌دانند. لذا پیش بینی قیمت سهام در روزهای آینده را مهمترین امر در راه رسیدن به این مهم می داند. وی با بهره گرفتن از فیلتر کلمن[۳۷]، داده ها را پیش پردازش کرده و با شبکه‌های عصبی دینامیک[۳۸] به پیش بینی قیمت می پردازد. وی برای اثبات کارایی مدل پیشنهادی، چهار سهم از بازار سهام هند؛ بمبئی[۳۹] را انتخاب و بررسی کرده است.
الیویرا[۴۰] (۲۰۱۳) با مهم دانستن این مسئله که پیش بینی جهت تغییر قیمت سهام سهم به سزایی در تنظیم سیاست‌های[۴۱] معامله گران دارد، پیشنهاد می‌کند که با بهره گرفتن از داده‌های تاریخی[۴۲] در مدل‌های ریاضی[۴۳] می‌توان به صحت و دقت خوبی در پیش بینی رسید. وی با بیان این مسئله که سه نوع تحلیل سری زمانی، تکنیکال و فاندمنتال[۴۴] برای تحلیل داده های تاریخی به کار گرفته می شوند، شبکه عصبی طراحی می‌کند که داده‌های ورودی آن، از ورودی های هر سه تحلیل ذکر شده می‌باشد. در واقع وی هر سه تحلیل را با هم یکی کرده و از قابلیت های هر کدام استفاده می‌کند. همچنین پیشنهاد می‌کند که استفاده محض از تمام داده‌ها باعث بیش برازش و پایین آمدن دقت شبکه می‌شود و لذا با بهره گرفتن از تکنیک های متعدد داده کاوی، داده ها را پیش پردازش[۴۵] می‌کند. وی صحت گفته‌های خود را در بازار سهام برزیل تأیید می‌کند.
کارا و همکاران[۴۶] (۲۰۱۱) با بیان این مسئله که پیش بینی جهت تغییرات قیمت سهام امری چالش برانگیز[۴۷] و در صورت صحت بسیار پر سود است، بسط مدل‌های ریاضی برای این مهم را به دلیل پیچیدگی‌های ذاتی بازار سهام بسیار مشکل می‌داند. وی با بهره گرفتن از اندیکاتورهای تحلیل تکنیکال به عنوان ورودی، کارکرد و نتایج عملکرد دو الگوریتم دسته بندی شبکه های عصبی و ماشین های بردار پشتیبان[۴۸] را بررسی کرده و با مقایسه نتایج، کارکرد شبکه های عصبی را بهتر و مفید تر می‌یابد.
جاسمی و همکاران[۴۹] (۲۰۱۱) شبکه‌های عصبی را به همراه تحلیل تکنیکال و نمودارهای شمعی ژاپنی[۵۰] به کار می برد، وی در پژوهشی به جای اینکه با شبکه‌های عصبی قیمت و یا اندیکاتورها را پیش بینی کند، در صدد پیش بینی و برازش یک مدل رگرسیون[۵۱] می‌باشد که متغیرهای مستقل آن، اندیکاتورهای تکنیکی و متغیر مستقل آن روند کوتاه مدت قیمت است. اندیکاتورهای تکنیکی توسط دو روش داده‌های خام[۵۲] و تحلیل تکنیکال به ترتیب به تعداد پانزده و بیست و چهار عدد تعریف شده‌اند. در نهایت با آزمایش بر روی داده‌های حاضر در یاهو فایننس[۵۳] به این نتیجه می‌رسد که نتایج پیش بینی به این روش بسیار کارآمدتر از متدهای کلاسیک است.
چانگ[۵۴] (۲۰۱۲) با ارائه مدل جدیدی از شبکه‌های عصبی تحت عنوان شبکه عصبی نیمه متصل[۵۵] به پیش بینی قیمت سهام به وسیله اندیکاتورهای تکنیکال می‌پردازد. این شبکه جدید، از نظر تابع فعال سازی[۵۶]، تعداد لایه‌ها و اتصال نرون‌ها با شبکه های عصبی معمول تفاوت دارد. نخست اینکه اتصال داشتن یا نداشتن دو نرون با هم تصادفی تعیین می‌گردد. تفاوت دوم در تصادفی بودن تعداد لایه ها نیز می‌باشد و سرانجام تابع فعال سازی نیز به جای سیگموید[۵۷]، تابع سینوسی[۵۸] انتخاب می‌گردد. وی برای اثبات کارآمدی الگوریتم پیشنهادی، آن را از سه نظر امتحان می‌کند. اوّل دقت پیش بینی آن را یعنی تفاوت مقادیر پیش بینی شده و مقادیر واقعی سنجیده، سپس از نظر بیش برازش با مدل‌های معمولی شبکه عصبی مقایسه کرده و در نهایت عملکرد آن را با سایر الگوریتم‌های رقیب مقایسه کرده است.
لو[۵۹] (۲۰۱۰) با این مقدمه که پیش بینی قیمت سهام و اساسا پیش بینی در تمام بازارهای مالی کاری سخت و چالش برانگیز است، استدلال می‌کند که این امر به دلیل وجود اغتشاش[۶۰] فراوان در میان داده‌های پیش بینی کننده است. وی پیشنهاد می‌کند که با به کار بردن آنالیز متغیر مستقل یکپارچه[۶۱]؛ در ابتدا باید در میان داده‌های پیش بینی کننده آنهایی که مستقل هستند را یافته، اغتشاش موجود در آنها را از بین برده و پس از آن ورودی ها را به منظور پیش بینی قیمت به شبکه عصبی داد. وی برای اثبات مدعای خود دو شاخص بازار بورس تایلند[۶۲] و نیکی[۶۳] را انتخاب کرده و با مقایسه عملکرد الگوریتم پیشنهادی با اغتشاش زدایی توسط امواج ویولت و سپس به کار بردن شبکه‌های عصبی بازخور بازگشتی و همچنین با شبکه‌های عصبی معمولی بدون فیلترینگ و همچنین قدم زدن تصادفی؛ الگوریتم پیشنهادی را کارا می‌یابد.
وانگ و همکاران[۶۴] (۲۰۱۱) نیز اظهار می‌دارد که پیش بینی قیمت سهام به دلیل بالا بودن تعداد متغیرهای مستقل امری مشکل و چالشی است. وی پیشنهاد می‌کند در ابتدا توسط الگوریتم[۶۵] WDBP با بهره گرفتن از ویولت اغتشاشات موجود میان داده ها از بین رفته و توسط شبکه‌های عصبی پس خور بازگشتی، پیش بینی انجام گیرد. همچنین برای اثبات الگوریتم پیشنهادی خود، آن را در بازار شانگهای[۶۶] به بوته آزمایش گذاشته و عملکرد بهتر الگوریتم پیشنهادی را نسبت به شبکه عصبی پس خور بازگشتی تصدیق می کند.

۱-۵- ضرورت انجام تحقیق و اهمیت تحقیق

همانگونه که پیش‌تر و در ادبیات موضوعی دیده شد، پیش بینی قیمت بالا و قیمت پایین برای یک دوره جلوتر، پیش از این انجام نشده است و خلاء وجود مدلی برای پیش بینی که به طور عملی قابل استفاده باشد، احساس می شود. پیش از این، در پژوهش های مشابه، تنها قیمت بسته شدن پیش بینی می شده است و این در حالی است که پیش بینی کننده سهم، ممکن است مالک سهام نباشد. در این حالت، پیش بینی کننده توانایی عملی برای استفاده از مدل را ندارد. دلیل این امر این است که وی احتمالا مجبور است، سهام را با همان قیمتی که پیش بینی می کند، خریداری کند. لذا در این پژوهش، به پیش بینی دو قیمت بالا و پایین پرداخته شده و توسط آن، پیش بینی کننده این فرصت را دارد که در قیمت پایین سهام را خریداری کرده و در قیمت بالا آن را بفروشد.

۱-۶- اهداف تحقیق

اهداف اصلی این پژوهش عبارتند از :

    • شناسایی مؤثرترین اندیکاتورهای تحلیل تکنیکال برای پیش بینی قیمت سهام مورد نظر
    • داده کاوی سری های زمانی برای تشخیص شبیه ترین سری زمانی به سری زمانی هدف، جهت پیش‌بینی تغییرات آینده سهام هدف، با بهره گرفتن از تغییرات گذشته قیمت سهم مشابه
    • طراحی و ساخت شبکه عصبی برای پیش بینی قیمت‌های بالا و پایین سهام مورد نظر

۱-۷- ساختار تحقیق

در ادامه این پژوهش و در فصل دوم، به معرفی شبکه های عصبی و انواع آن، داده کاوی و نقش آن در پیش پردازش داده ها و داده کاوی سری‌های زمانی و اندیکاتورهای تحلیل تکنیکال می‌پردازیم. در فصل سوم به بیان روش تحقیق انجام شده با جزئیات کامل، شامل مراحل سه گانه پیش پردازش و ساخت اطلاعات و ابزارهای به کارگرفته شده در هر مرحله، معماری شبکه عصبی و الگوریتم‌های فعال سازی و همچنین الگوریتم‌های رقیب خواهیم پرداخت. در فصل چهارم، نتایج عملی به دست آمده از داده کاوی سری‌های زمانی و ساخت شبکه عصبی، به تفصیل توضیح داده می‌شود و نتایج به دست آمده، با نتایج الگوریتم‌های رقیب مقایسه می گردد. در انتها و در فصل پنجم، به بررسی نتایج و پیشنهادات برای تحقیقات آتی خواهیم پرداخت

فصل دوم

ادبیات تحقیق

۲-۱- مقدمه

بازارهای مالی به دلیل خصوصیات منحصر به فردی نظیر عدم نیاز به سرمایه کلان، سادگی و کم هزینه بودن معاملاتشان و عدم وجود ریسک نکول[۶۷]، در عصر اخیر به یکی از پرطرفدارترین حوزه‌های سرمایه گذاری تبدیل شده‌اند. حکومت‌ها و دولت‌ها نیز به این دلیل که می‌توانند با گرد هم آوردن سرمایه‌های اندک و سرمایه های کلان، بودجه‌های عظیمی برای امور کشوری فراهم کنند، همواره به گسترش این بازارها کمک کرده و با تصویب قوانین متعددی از جمله معافیت‌های مالیاتی در تلاش برای کشاندن پس اندازهای مردم به این بازارها بوده اند. به دلیل همین خصوصیات، حجم عظیمی از سرمایه گذاران به این حوزه وارد شده و این بازارها با سرعت چشمگیری نیز در حال رشد هستند. این حجم زیاد سرمایه گذاران، برای کسب سود از این بازارها وارد آن شده و لذا همواره به دنبال راه‌هایی برای افزایش دامنه سود خود بوده اند. این مسئله باعث شده است که سرمایه گذاران همواره به دنبال پیش بینی اتفاقات آینده و قیمت ها در بازار بوده و از این طریق کسب سود کنند؛ به همین دلیل است که همزمان با رشد این بازارها، مدل های بسیار متنوعی برای پیش بینی بوجود آمده و در حال گسترش نیز هستند. به طور کلی شاید بتوان سرمایه گذاران را به دو دسته تقسیم کرد، آنها که به مدل کارایی بازار سرمایه اعتقاد داشته و به پیش بینی این بازارها معتقد نیستند؛ و آنهایی که به روش های مختلفی به پیش بینی در این بازارها می پردازند. در مورد نظریه کارایی بازار در ادامه به تفسیر سخن گفته خواهد شد و لذا در ادامه به مرور روش های متنوعی که برای پیش بینی قیمت سهام بوجود آمده و به کار گرفته شده اند خواهیم پرداخت. به صورت کلی می‌توان گفت که تلاش برای پیش بینی بازارهای مالی در سه حوزه اتفاق افتاده است، حوزه اول به بررسی ساختار بازار، سهام موجود در آن و صنایع پرداخته و با شناسایی ویژگی های خاص این بازارها به تشخیص و معرفی صنایع و یا سهام برتر پرداخته و سرمایه گذاران را از این طریق یاری می‌کنند. حوزه دوم به ایجاد یک مدل برای استراتژی‌های سرمایه گذاری پرداخته و سعی دارند با شناسایی نقاط خرید و فروش سهام، کاری کنند که سرمایه گذاران در کمترین قیمت خرید و در بیشترین قیمت اقدام به فروش نمایند. حوزه سوم اما به پیش بینی قیمت سهام می‌پردازند، جایی که بیشترین گستردگی استفاده از الگوریتم‌ها و مدل‌های مختلف در آن وجود دارد. این حوزه را می‌توان به صورت کلی در سه بخش یا سه دیدگاه دید؛ تحلیل تکنیکال[۶۸]، تحلیل بنیادین[۶۹] و تحلیل با مدل‌های هوش مصنوعی[۷۰]. در ادامه به توضیح مختصری در مورد هر یک از این دیدگاه ها خواهیم پرداخت.

۲-۱-۱- تحلیل تکنیکی

روشی برای پیش‌بینی قیمت‌ها در بازار از طریق مطالعه وضعیت گذشته بازار است. در این تحلیل از طریق بررسی تغییرات و نوسان‌های قیمت‌ها و حجم معاملات و عرضه و تقاضا می‌توان وضعیت قیمت‌ها در آینده را پیش‌بینی کرد. این روش تحلیل در بازار ارزهای خارجی، بازارهای بورس اوراق بهادار و بازار طلا و دیگر فلزات گران‌بها کاربرد گسترده‌ای دارد.
این نوع تحلیل با بهره گرفتن از مطالعه رفتار و حرکات قیمت و حجم سهام در گذشته و تعیین قیمت و روند آینده سهم صورت می‌پذیرد. تغییرات قیمت سهم با بهره گرفتن از پیشینه تاریخی و نمودار توسط تحلیل گر تکنیکی مورد تجزیه و تحلیل قرار می‌گیرد. این روش بیشتر مورد استفاده سفته‌بازان قرار می‌گیرد و بدین صورت قصد دارند تا بازده مورد نظر خود را در هنگام بالا رفتن قیمت سهم افزایش دهند. در واقع سرمایه گذاران با دیدگاه کوتاه مدت از این روش بهره می‌جویند.
تحلیل تکنیکی (فنی)، با آزمون قیمت‌های گذشته و حجم مبادلات حرکت‌های آینده، قیمت را پیش بینی می‌کند. اساس این تحلیل‌ها بر استفاده از نمودار و رابطه‌های ریاضی و هندسی متمرکز است تا بدین گونه روندهای کوچک و بزرگ بدست آید. در این راستا فرصت‌های خرید یا فروش از راه برآورد محدوده نوسانات بازار مشخص می‌شود.

۲-۱-۲- تحلیل بنیادین

تحلیل بنیادین یک شرکت شامل تحلیل گزارشات مالی و سلامت مالی شرکت، مدیریت و امتیازات رقابتی، رقبا و بازارهای مربوطه‌ است. هنگامیکه این تحلیل در بازارهای آتی[۷۱] و فارکس[۷۲] به کار می‌رود، تمرکز اصلی بر شرایط اقتصادی، نرخ بهره، تولید، سودآوری و مدیریت است. وقتی سهام، قراردادهای آتی یا ارز مورد تحلیل بنیادین قرار می‌گیرد، دو رویکرد اساسی وجود دارد: تحلیل پایین به بالا و تحلیل بالا به پایین. این عبارات جهت تمیز دادن چنین تحلیلهایی از سایر تحلیل‌های سرمایه گذاری نظیر تحلیل‌های کمی و تکنیکی است. تحلیل بنیادین بر اساس داده‌های گذشته و فعلی با هدف پیش بینی مالی انجام می‌پذیرد. اهداف متعددی برای این تحلیل وجود دارد. تعیین ارزش سهام شرکت و پیش بینی تغییرات آتی قیمت، برآورد عملکرد تجاری و ارزیابی مدیریت و اتخاذ تصمیمات داخلی جهت محاسبه ریسک اعتباری در تحلیل بنیادین اساس پیش بینی بر مبنای وقایع و رخدادهای واقعی پایه گذاری شده‌است. معامله گر با تحلیل اتفاقات و اخبار دنیای واقعی و بر اساس دانش و استراتژی خود، به پیش بینی بازار می‌پردازد. استراتژی روش محاسبه نقاط ورود به بازار و خروج از آن است. پایه نظر تحلیل گران بنیادی این است که تمام تغییرات در قیمتها حتماً یک علت اقتصادی بنیادی دارد.

۲-۱-۳- تحلیل توسط مدل‌های علمی

مدل‌های علمی بسیار متنوعی برای استفاده در پیش بینی، در چند دهه اخیر معرفی و به کارگیری شده‌اند. از مدل‌های کلاسیک پیش بینی رگرسیونی[۷۳] گرفته تا متدهای متنوع و به روزی که در سری‌های زمانی[۷۴] معرفی می شوند؛ از جمله کارهای ارزشمند استفاده شده در این عصر هستند. در سال های اخیر اما، استفاده از الگوریتم های کلاسیک معرفی شده کمتر شده و خبرگان مالی به استفاده از روش‌های نوین معرفی شده توسط علم هوش مصنوعی روی آورده‌اند. دلیل این امر این است که پیچیدگی بسیار زیاد بازار سهام، استفاده از مدل‌های خطی را محدود کرده است. در واقع رفتار غیر خطی کاملا در قیمت سهام مشخص بوده و تخمین آن با متدهای خطی باعث ایجاد خطای زیادی می‌گردد. در این میان، استفاده از الگوریتم‌های کلاسیک غیر‌خطی نیز کارایی چندانی ندارند. دلیل این امر نیز این است که در این متدها باید مدلی که قرار است به داده‌ها برازش شود باید از قبل معلوم باشد و همچنین این مدل‌ها دارای محدودیت زیادی در شکل و پیچیدگی هستند و لذا استفاده از این مدل‌ها، به مراتب حتی از مدل‌های خطی نیز کارایی کمتری دارند. در این میان، حجم بالای داده‌های موجود و محدودیت‌های مدل‌های کلاسیک نیز از جمله مشکلات دیگری است که این حوزه را به سمت استفاده از مدل‌های هوش مصنوعی سوق داده است.
علم هوش مصنوعی با معرفی ابزارهای بسیار متنوعی مثل شبکه‌های عصبی[۷۵] ، ماشین بردار پشتیبان[۷۶] و الگوریتم‌های فراابتکاری[۷۷] امکانات بی نظیری را برای کار با داده های فراوان، تخمین مدل‌های بسیار پیچیده و سرعت عمل بالا در برازش فراهم آورده و به همین دلایل با اقبال بسیار زیادی روبرو شده است. در این میان، قابلیت استفاده از شبکه‌های عصبی برای پیش بینی قیمت بسیار بالاتر از ابزارهای دیگر است. دلیل این امر این است که این شبکه‌ها قابلیت تخمین مدل‌های پیچیده تر و کار با تعداد داده های بسیار زیادتر را دارد. در تحقیقات انجام شده عصر حاضر نیز بیشترین استفاده از مدل‌های هوش مصنوعی در حوزه پیش بینی سهام، به استفاده از این شبکه ها باز می‌گردد.
نکته مهمی که در مورد این شبکه‌ها وجود دارد این است که این شبکه‌ها اغلب دارای بیش برازش می‌گردند. به این معنا که مدل را حتی از حد واقعی خود نیز پیچیده تر تخمین می‌زنند. برای جلوگیری از این اتفاق، باید معماری‌های مناسبی را برای شبکه انتخاب کرده و الگوریتم های یادگیری را نیز به درستی استفاده کرد. علاوه بر این لازم است که میزان اطلاعات ورودی به این شبکه نیز محدود شده و پیچیدگی‌های احتمالی را از بین ببرد. در مورد شبکه های عصبی و معماری ها و الگوریتم‌های یادگیری آنها در ادامه به تفصیل پرداخته خواهد شد، اما در مورد کاهش حجم ورودی ها و به گزین کردن آنها، از علم داده کاوی استفاده می شود. این علم میان رشته ای با ابزارهای بسیار متنوعی که تعریف می‌کند، قابلیت های بی نظیری را برای پیش پردازش داده ها و توصیف مجموعه داده ها معرفی می‌کند. این علم نیز در ادامه به تفصیل توضیح داده خواهد شد. شکل (۱) مروری کلی بر بخش مقدمه و تحلیل های ممکن در بازار سرمایه را نشان می دهد :
شکل ۱-۱ : دسته بندی کلی تحلیل های کاربردی در بازار سرمایه
همانگونه که ذکر شده؛ بررسی‌های انجام شده در بازار سرمایه در سه حوزه کلی شناسایی سهام مناسب برای سرمایه گذاری، شناسایی و به کارگیری استراتژی مناسب برای خرید و فروش در بازار و پیش بینی قیمت‌های آینده سهام قرار می‌گیرند. همچنین، به صورت کلی تحلیل‌های ممکن در مورد قیمت سهم در آینده در سه بخش تحلیل تکنیکی، تحلیل بنیادین و تحلیل توسط متدهای ریاضی قرار می‌گیرند. متدهای ریاضی نیز در دو دسته متدهای کلاسیک و متدهای هوش مصنوعی قرار گرفته و بررسی می شوند. در ادامه این تحقیق، در ابتدا به بررسی امکان پیش بینی و نظریه کارایی بازار سرمایه پرداخته و سپس به توضیح شبکه عصبی و داده کاوی پرداخته خواهد شد.

۲-۲- آیا بازار سرمایه پیش بینی پذیر است؟

۲-۲-۱- نظریه کارایی بازار سرمایه

بیش از ربع قرن است که توجه استادان مالی و اقتصادی دانشگاه‌ها متوجه کارایی بازار سرمایه (Capital Market Efficiency) در کشورهای مختلف شده است. برای کشورهای سرمایه‌داری، کارا بودن بازار از اهمیت زیادی برخوردار است، چرا که در صورت کارا بودن بازار سرمایه، هم قیمت اوراق بهادار به درستی و عادلانه تعیین می‌شود و هم تخصیص سرمایه که مهم‌ترین عامل تولید و توسعه اقتصادی است، به صورت مطلوب و بهینه انجام می‌شود. در دنیای مالی سه سطح کارایی بازار وجود دارد:

    • کارایی اطلاعاتی[۷۸]
    • کارایی تخصیصی[۷۹]
  • کارایی عملیاتی[۸۰]
موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...